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Abstract Anthropic activities are one of the main

drivers of change in the environmental characteristics

of streams and the diversity of aquatic macroinverte-

brates. We evaluated the influence of an anthropic

gradient (varying degrees of impact) on the genera

level alpha and beta diversity of the Ephemeroptera,

Plecoptera, and Trichoptera (EPT) in 48 eastern

Amazonian streams. These insects were sampled

using a dipnet, and the anthropic gradient was

represented by the activities observed in the channel

and the catchment of each stream. We found that

increasing anthropic impact reduced the alpha diver-

sity of the EPT. The Total Beta Diversity (BDTotal)

showed a moderate degree of variation in streams. The

streams with the greatest Local Contribution to Beta

Diversity (LCBD) had the lowest alpha diversity of

EPT, while the genera with the greatest Species

Contribution to Beta Diversity (SCBD) were the most

abundant and widely distributed among the streams.

Thus, the increase in anthropic impacts reduced the

alpha diversity of the EPT and indirectly influenced

the uniqueness, emphasizing the importance of using

different components of the diversity to understand the

effects of anthropic impacts on Amazonian streams.
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Introduction

The transformation of natural environments into an

anthropic landscape also affects aquatic systems,

leading to changes in environmental conditions and

decreasing species diversity (Masese et al., 2009; Jun

et al., 2011; Törnblom et al., 2011; Siqueira et al.,

2015; Fierro et al., 2017). This is especially true for

worldwide freshwater systems, which are considered

the most threatened ecosystems (Malmqvist & Run-

dle, 2002; Strayer & Dudgeon, 2010). Land use in the

drainage basin (catchment) of low-order streams alters

the landscape (Allan, 2004), increasing the input of

sediments (Törnblom et al., 2011; Taniwaki et al.,

2019), reducing microhabitats and organic matter

availability (Miserendino & Masi, 2010; Jun et al.,

2011), changing dissolved oxygen levels and water

temperatures (Brand & Miserendino, 2015; Taniwaki

et al., 2019).

The effects of anthropic activities can be investi-

gated by measuring different aspects of the biodiver-

sity of the aquatic system (Ligeiro et al., 2013;

Siqueira et al., 2015; Cunha& Juen, 2017; Fierro et al.,

2017). Biological diversity can be measured at differ-

ent levels of organization, that is, alpha (a)-diversity,
which represents the diversity (species richness) at a

given site, beta (b)-diversity, which corresponds to the
variation among sites, and gamma (c)-diversity, which
measures the total diversity found in a region (Whit-

taker 1960,1972). Measures of a-diversity have been

commonly used as ecological indicators of local

environmental conditions (Heino, 2009), and are

widely-used in decision-making for the establishment

of conservation targets (Myers et al., 2000). Given

this, a large number of studies have focused on the

anthropic impact on the a-diversity of benthic

macroinvertebrates (Genito et al., 2002; Jun et al.,

2011; Ligeiro et al., 2013; Ramezani et al., 2016;

Alemneh et al., 2017). These studies have shown a

negative relationship between the a-diversity of

benthic macroinvertebrates and strong anthropic

impacts (Genito et al., 2002; Jun et al., 2011;

Ramezani et al., 2016).

The b-diversity reflects the way species respond to

the environmental variation along an ecological

gradient (Heino, 2009) and spatial distribution (Rocha

et al., 2018). Previous studies have assessed b-
diversity in a number of different ways using, for

example, additive (Lande, 1996; Veech et al., 2002)

and multiplicative partitioning (Jost, 2007) or the

decomposition of dissimilarities into their nested and

turnover components (Baselga, 2010). Legendre & De

Cáceres (2013) recently proposed an approach that

decomposes the total variation found in a community

(Total Beta Diversity—BDTotal) into the Local Con-

tribution to Beta Diversity (LCBD) and the Species

Contribution to Beta Diversity (SCBD). The LCBD

represents the degree of ecological uniqueness of a

given site in comparison with all the other sites

sampled in a given region, while the SCBD represents

the relative contribution of each species to the

observed patterns of b-diversity (Legendre & De

Cáceres, 2013; Heino & Grönroos, 2017). Despite the

growing number of studies that have evaluated the

LCBD at different scales of time and space (Mimouni

et al., 2015; Heino & Grönroos, 2017; Kong et al.,

2017; Teittinen et al., 2017; Vilmi et al., 2017;

Siegloch et al., 2018; Sor et al., 2018; Li et al., 2020a),

only a few studies have evaluated the influence of

anthropic activities on the LCBD (Simões et al., 2015;

Bourassa et al., 2017; Heino et al., 2017; Leão et al.,

2020; Li et al., 2020b).

Empirical studies have found either a negative or a

positive relationship between the LCBD and anthropic

activities (Simões et al., 2015; Bourassa et al., 2017;

Heino et al., 2017; Borges et al., 2020; Leão et al.,

2020; Li et al., 2020b). For example, the LCBD is

lower when the quality of the environmental condi-

tions decreases with increasing anthropic effects

(Bourassa et al., 2017; Borges et al., 2020; Li et al.,

2020b), which means that the community is composed

primarily of species that are relatively less specialized

and more tolerant to environmental change (Bourassa

et al., 2017; Borges et al., 2020). However, it is

important to note that high LCBD values reflect the

presence of unique species in the community due to

specific ecological conditions in either preserved or

altered systems (Legendre & De Cáceres, 2013). The

LCBD may also have either a positive or negative

relationship with a-diversity (Legendre &De Cáceres,

2013). A positive relationship between the LCBD and

a-diversity (Kong et al., 2017; Pajunen et al., 2017)

123

Hydrobiologia



may occur where streams with low levels of anthropic

activity have a relative abundance of microhabitats

and resources (Miserendino & Masi, 2010; Jun et al.,

2011), which support a larger number of species with

distinct ecological niches (Beisel et al., 2000), which

can harbor unusual species that contribute to increas-

ing LCBD in these sites (Legendre & De Cáceres,

2013). However, a negative relationship between the

LCBD and a-diversity, would suggest that, despite

having lower a-diversity altered sites may have

distinct (rare) and tolerant species that make a greater

contribution to b-diversity (Heino et al., 2017;

Pajunen et al., 2017). The SCBD may be associated

with certain characteristics of the species, such as their

abundance and occupancy (Heino & Grönroos, 2017;

Vilmi et al., 2017; Da Silva et al., 2018). If, for

example, species abundance varies considerably

among sites, this will increase b-diversity (Heino &

Grönroos, 2017). On the other hand, species that are

well distributed among sites, will tend to increase b-
diversity (Heino & Grönroos, 2017). This variation in

abundance and distribution has a major effect on the b-
diversity values, which reinforces the importance of

the systematic evaluation of the mechanisms and

parameters that determine this variation.

To understand how aquatic biodiversity responds to

anthropic disturbance, we used a dataset on genera

level Ephemeroptera, Plecoptera, and Trichoptera

(known collectively as the EPT) considered to be

reliable environmental indicators (Ligeiro et al., 2013;

Ramezani et al., 2016; De Faria et al., 2017; Luiza-

Andrade et al., 2017). The EPT species also occupy

distinct substrates (e.g., Fidelis et al., 2008) and feed

on different resources (e.g., Cummins & Klug, 1979;

Ceneviva-Bastos et al., 2017). The present study

evaluated the influence of varying degrees of anthro-

pic activity (the anthropic gradient) on the structure of

the EPT community. Three hypotheses were tested:

(i) streams influenced by more intense anthropic

activity have a lower a-diversity of the EPT and a

lower Local Contribution to b-diversity (LCBD); (ii) a
positive relationship exists between the LCBD and the

a-diversity of the EPT, and (iii) a positive relationship
exists between the Species Contribution to b-diversity
(SCBD) and the total abundance and occupancy of the

EPT.

Materials and Methods

Study area

The present study focused on 48 streams located in the

basin of the Capim River in the northeastern portion of

the state of Pará, Brazil (Fig. 1). Most of the streams

(n = 35) were distributed along a known gradient of

anthropogenic impact, while the others (n = 13) were

located in forested areas. The human colonization of

the Capim basin became more intense in the 1960s,

due to government incentives for the occupation of

land in the Amazon region (e.g., Lui & Molina, 2009;

Pinto et al., 2009). This occupation resulted in a

mosaic landscape dominated by forest fragments,

agriculture, silviculture (e.g., Eucalyptus spp.), log-

ging, pasture, and bauxite and kaolin mining (Pinto

et al., 2009; Dias et al., 2018). The region’s climate is

humid tropical (Peel et al., 2007) with a mean annual

precipitation of 1,800 mm (Embrapa, 1986) and

relative humidity of 81% (Pinto et al., 2009). Precip-

itation peaks between December and May, while the

dry season lasts from June to November (Embrapa,

1986).

Anthropic gradient

The anthropic gradient was described using an Inte-

grated Disturbance Index (IDI) which is defined by

combining the anthropic activities in the riparian

vegetation (Local Disturbance Index—LDI) and the

proportion of Land Use and Land Cover (called LULC

from here) in the catchment area (Catchment Distur-

bance Index—CDI) of each stream (Ligeiro et al.,

2013). The LDI summarizes the presence and prox-

imity of 11 categories of anthropic activity (crops,

pasture, dams and dykes, buildings, pavement, roads,

pipes, landfill/trash, parks/gardens, logging, and min-

ing) within the channel and riparian vegetation within

11 cross-sections established at each stream (Kauf-

mann et al., 1999; Peck et al., 2006). Further details of

the survey design are provided in the Characterization

of the environment section, below. The values

attributed to each anthropic activity were weighted

according to their proximity to the channel, receiving a

weight of 1.5 when present in the channel, 1.0 when

present within the riparian vegetation (10 m 9 10 m),

and 0.667 when outside the riparian vegetation

(Kaufmann et al., 1999).

123

Hydrobiologia



The CDI was calculated based on the LULC

recorded for the catchment area, calculated from the

digital elevation model with a spatial resolution of

30 m (Shuttle Radar Topography Mission—SRTM)

using the QGis geoprocessing software (version 2.14).

The LULC was mapped through the interpretation of

multispectral images of the REIS (RapidEye Earth

Imaging System, http://geocatalogo.mma.gov.br/),

which were acquired for the months in which the

samples were collected during the study. The REIS

images are 77 km wide and 1,500 km in length, with a

spatial resolution of 5 m and spectral resolution of five

bands. This fine spatial resolution delimits clearly the

shape and texture of the elements, while the spectral

resolution ensures a high mapping accuracy for the

targets.

The images were submitted to three adjustments

before being classified: (i) atmospheric correction, (ii)

the creation of a mosaic of the images, and (iii) mosaic

segmentation. The supervised classification was based

on the selection of samples (segments) from the image

according to their texture, form, tonality, and color

(De Almeida et al., 2016). The samples were grouped

into five LULC classes: (i) dense forest (natural

vegetation), (ii) degraded forest (forest fragments

formed by predatory logging), (iii) pasture (extensive

and/or intensive production of livestock), (iv) exposed

soil, and (v) bauxite mining (see De Almeida et al.,

2016; Montag et al., 2019; Leão et al., 2020). The

LULC classification was validated using images from

the TerraClass Project (2014), which were provided by

the Brazilian National Institute of Space Research

(INPE, http://www.inpe.br/). The percentage of each

LULC class was measured within each catchment area

and the weighted percentages of land use in the

catchment were used to calculate the CDI (Online

Resource, Table S1). The different types of land use

were weighted according to the degree of anthropic

change in environmental conditions (e.g., López et al.,

1998; Miserendino & Masi, 2010; Eludoyin et al.,

Fig. 1 Land Use and Land Cover (LULC) of 48 streams

distributed within the Capim River basin in the northeastern

state of Pará, Brazil. The circle size represents the anthropic

gradient on stream (IDI—Integrated Disturbance Index).

Streams in forest areas (no impact) have IDI = 0, while streams

with higher values have stronger anthropic activities
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2017). That is, areas of bauxite mining and exposed

soil were weighted more than pasture, which was, in

turn, weightedmore than degraded forest (CDI = 4x%

bauxite mining and exposed soil ? 2x % pasture ? 1x

% degraded forest).

The anthropic gradient (IDI) across the streams was

defined by combining the LDI and CDI values

(Ligeiro et al., 2013). For this, as the different indices

were measured on different numerical scales, each

index was first standardized to 75% of its maximum

value (Ligeiro et al., 2013). In this case, the LDI values

were standardized by dividing them by 5, given the

empirical maximum score of 7, while the CDI values

were divided by 300, given the empirical maximum of

400 (i.e., if the forest of the entire catchment had been

cleared). The IDI was then calculated as [(LDI/

5)2 ? (CDI/300)2]�, where streams with higher val-

ues have greater anthropic activity (Ligeiro et al.,

2013) (Online Resource, Table S1).

Characterization of the environment

The study sites ranged from first to third order streams,

based on Strahler’s (1957) classification, with a mean

width of 3 m (± 1 m, standard deviation) and a mean

depth of 0.22 m (± 12 m). Environmental variables

were measured along a 150 m reach, which was

subdivided into 10 continuous sections spaced at

intervals of 15 m, with 11 cross-sections along the

entire reach (following Peck et al., 2006). At each of

the 11 cross-sections, the total organic matter (per-

centage of roots, fine litter, coarse litter, woody debris,

and filamentous algae) was measured visually, and the

total immersion (percentage to which substrate is

covered into the silt, sand or mud on the stream

bottom) was determined by five equidistant measure-

ments in each transect. The margin canopy cover of

the cross-sections was also characterized at two points

(left and right margins) of the stream channel using a

spherical densiometer positioned at a height of

0.30 cm above the surface of the water. The wetted

width corresponds to the cross-section of the stream,

and the limits of the water at its margins, which was

measured in each transect using a 1.5-m-long rigid

ruler (a graded piece of plastic pipe).

The mean water temperature (�C), dissolved oxy-

gen concentration (mg/l), and pHwere measured using

a multiparameter Horiba device in three equidistant

sections of the stream (downstream, middle and

upstream). The amount of glide habitat (slow-moving

water) was also quantified visually in each of the 10

sections. Eight environmental parameters were calcu-

lated based on these measurements, following Kauf-

mann et al. (1999): wetted width (m), total immersion

(%), total organic matter (%), margin canopy cover

(%), glide (%), water temperature (�C), dissolved

oxygen (mg/l), and pH. A Pearson correlation analysis

was then conducted, and three of the variables that

were correlated significantly were omitted prior to the

subsequent analyses, leaving only: wetted width, total

organic matter, margin canopy cover, water temper-

ature, and dissolved oxygen.

Sampling of the EPT

The EPT were sampled during the Amazonian dry

season to guarantee the greatest possible diversity of

aquatic insects (Bispo et al., 2001; Silva et al., 2018).

As the water flow is reduced, the aquatic environment

becomes more stable during the dry season, and the

drift of aquatic organisms is also reduced (Bispo et al.,

2001). For the EPT sampling, each stream section was

subdivided into three longitudinal 5-m segments.

These segments were evaluated visually to guarantee

the collection of all the different types of substrates

(e.g., root, sand, fine organic debris, leaf banks, woody

debris, and macrophytes). The specimens were col-

lected using a dipnet (18 cm in diameter with a

0.05 mm mesh) in two portions of the substrate in the

first two segments of each section, with a total of 20

segments being sampled per stream (Shimano et al.,

2018). The third segment of each longitudinal section

of the stream was used to access the substrate of the

next section, to avoiding trampling this section prior to

sampling. The specimens collected in each segment

were grouped into a single sample representing the

stream.

The specimens were separated from the substrate in

the field and then fixed in 85% ethanol. The EPT were

identified to the genus level using the taxonomic keys

of Domı́nguez et al. (2006), Salles & Domı́nguez

(2012), Hamada & Silva (2014), Pes et al. (2014), Sal-

les & Lima (2014), and Salles et al. (2014). Previous

studies have shown that a genus level taxonomic

resolution is adequate to determine the response of

aquatic insects to environmental changes caused by

anthropic activities in streams of the Brazilian Ama-

zon and Cerrado biomes (De Faria et al., 2017; Luiza-
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Andrade et al., 2017; Godoy et al., 2019). Following

identification, the specimens were deposited in the

Aquatic Insects collection of the de Ecology and

Conservation Laboratory (LABECO) at the Federal

University of Pará (UFPA) in Belém, Brazil.

Data analysis

We use Principal Coordinates Analysis (PCoA,

Gower, 1966) to visualize the ordination of streams

based on environmental variables (wetted width, total

organic matter, margin canopy cover, water temper-

ature, and dissolved oxygen) in unconstrained ordina-

tion space. The euclidean distance matrix was built

from standardized environmental variables. Then, the

envfit function (permutations = 999) was used to

relate the environmental variables to the PCoA axes.

Only the significant environmental variables

(P\ 0.05) were adjusted in the PCoA ordination.

The a-diversity of the EPT was calculated as the

genera richness per site. The total abundance of each

genus was the total number of individuals present in all

the streams, while occupancy was assessed by calcu-

lating the number of streams occupied by each genus

(Heino & Grönroos, 2017; Da Silva et al., 2018). The

LCBD and SCBD components were calculated from

the total b-diversity (BDTotal) of the study area

(Legendre & De Cáceres, 2013). For this, the compo-

sition matrix of EPT genera was first adjusted by

Hellinger’s transformation. The BDTotal was parti-

tioned into the Local Contribution to b-diversity
(LCBD) and the Species Contribution to b-diversity
(SCBD), following Legendre & De Cáceres (2013).

The streams and genera with above average LCBD

and SCBD values, respectively, were considered to be

those that most contributed to the BDTotal (Mimouni

et al., 2015; Sor et al., 2018; Leão et al., 2020).

A Generalized Linear Model (GLM) with a nega-

tive binomial distribution, which is appropriate for

overdispersed data (Zuur et al., 2009), was used to

assess whether streams influenced by more intense

anthropic activity have a lower a-diversity of EPT

(hypothesis i). The model was validated visually by

the simulated envelope approach (Moral et al., 2017).

A beta regression (Cribari-Neto & Zeileis, 2010) with

logit link function was used to assess whether streams

influenced by more intense anthropic activities have a

lower Local Contribution to b-diversity (LCBD)

(hypothesis i), whether the LCBD has a positive

relationship with the a-diversity of the EPT (hypoth-

esis ii), and whether the Species Contribution to b-
diversity (SCBD) has a positive relationship with total

EPT abundance and occupancy (hypothesis iii). The

beta regression is the most appropriate for response

data that vary between 0 and 1, as in the case of both

the LCBD and SCBD, because this model is naturally

heteroskedastic (for further details, see Cribari-Neto&

Zeileis, 2010).

Moran’s eigenvector maps based on distance,

dbMEM (Dray et al., 2006), were used to evaluate

and control for the possible influence of spatial

structuring on the environmental variables (wetted

width, total organic matter, margin canopy cover,

water temperature, and dissolved oxygen) and EPT

community (a-diversity and LCBD). The eigenvectors
in this analysis were calculated from the Euclidean

distance matrix (latitude and longitude) (Borcard &

Legendre, 2002; Dray et al., 2006) and only positive

eigenvectors were selected as spatial proxies (Borcard

& Legendre, 2002). The relationships between spatial

factors and environmental variables, a-diversity, and
the LCBD of the EPT, were evaluated using the

forward selection method (Blanchet et al., 2008),

GLM, and beta regression, respectively.

Each stream sampled during the present study was

considered to be a sample unit. The analyses were run

in the R software (R Core Team, 2018), using the

betareg (Cribari-Neto & Zeileis, 2010), MASS (Ven-

ables & Ripley, 2002), vegan (Oksanen et al., 2019),

hnp (Moral et al., 2017), and adespatial packages

(Dray et al., 2018).

Results

Environmental structure

In the PCoA, the first two axes explained 58% of

environmental variation, with 37% on the first axis and

21% on the second (Fig. 2). The ordering of the PCoA

axes was correlated with wetted width (r2 = 0.61,

P = 0.001), total organic matter (r2 = 0.42,

P = 0.001), margin canopy cover (r2 = 0.65,

P = 0.001), water temperature (r2 = 0.72, P = 0.001)

and dissolved oxygen (r2 = 0.47, P = 0.001). When

observing the streams’ ordination, the most impacted

have a higher water temperature and dissolved oxy-

gen, greater wetted width and lower proportion of
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margin canopy cover and total organic matter (Fig. 2).

The relationship between spatial factors and environ-

mental variables indicated that only the margin canopy

cover was influenced significantly by broad-scale

spatial factors (r2 = 0.119, P = 0.014).

The EPT community

A total of 8,609 EPT specimens were collected,

representing 18 families and 47 genera (Online

Resource, Table S2). The order Ephemeroptera was

represented by 4,287 individuals (mean ± standard

deviation, 89.313 ± 84.221), followed by the Tri-

choptera, with 4,042 individuals (84.208 ± 134.403),

and the Plecoptera, with 280 individuals

(5.833 ± 9.926). The a-diversity of the EPT was

negatively related to the anthropic gradient (IDI)

(Estimate = - 0.723, z = - 2.006, P = 0.045)

(Fig. 3) and was significantly influenced by broad-

scale spatial factor (Estimate = 0.289, z = 4.056,

P\ 0.001).

The BDTotal was 0.57 and the SSTotal was 26.59.

The LCBD values ranged from 0.010 to 0.048 (Online

Resource, Table S1). Nineteen streams had above

average ([ 0.021) LCBD values (Fig. 4A) of which,

16 were influenced by varying degrees of anthropic

activity, and only three were not impacted by

anthropic activity (Online Resource, Table S1). The

LCBD was not related to the anthropic gradient (IDI)

(P = 0.594), although it was negatively related to the

a-diversity of EPT (Estimate = - 0.039;

z = - 4.889; P\ 0.001) (Fig. 5, Online Resource

Table S3), although no relationship was found

between the LCBD and spatial factors (Online

Resource, Table S4). The SCBD values ranged from

0.0001 to 0.1383 and 14 genera had an above average

([ 0.0204) contribution to b-diversity (Fig. 4B). The

SCBD was related positively to the total abundance

(Estimate = 0.000; z = 2.639, P = 0.008) and occu-

pancy (Estimate = 0.089; z = 8.940; P\ 0.001) of

the EPT (Fig. 6, Online Resource Table S3).

Discussion

The results of the present study indicated that the a-
diversity of the EPT decreased with increasing

anthropic impact. This response is similar to that

found in other studies that have evaluated the influence

of anthropic pressures on the a-diversity of aquatic

insects (Genito et al., 2002; Jun et al., 2011; Ligeiro

et al., 2013; Ramezani et al., 2016; Alemneh et al.,

Fig. 2 Principal Coordinates Analysis (PCoA) ordination based

on environmental variables each stream related to the anthropic

gradient (IDI). The points correspond to the 48 streams sampled

within the Capim River basin in the northeastern state of Pará,

Brazil. Black arrows indicate the environmental variables

significantly correlated with the ordination. Abbreviation of

environmental variables: TOM (Total Organic Matter), MCC

(Margin Canopy Cover), WW (WettedWidth), T (Temperature)

and DO (Dissolved Oxygen)

Fig. 3 Relationship between EPT a-diversity and anthropic

gradient (IDI). Color gray represent the confidence interval of

0.95 for the linear model
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2017). This negative relationship was probably also

due to the fact that more impacted streams had a series

of characteristics, such as reduced margin canopy

cover and total organic matter, and increased water

temperatures, which are less suited to the ecological

adaptations of many genera. Aquatic insects have

morphological, physiological, and behavioral adapta-

tions that reflect the physical features and conditions

found in their habitats (Poof & Ward, 1990; Poff,

1997). However, species tend to respond differently to

the anthropogenic changes that alter the characteristics

of the environment (e.g., temperature, vegetation, and

organic matter), with their response depending on their

tolerance or ability to adapt (Poof &Ward, 1990; Poff,

1997). Thus, the loss of more favorable conditions, as

Fig. 4 Local Contribution to b-diversity (LCBD) (A) and (B) Species Contribution to b-diversity (SCBD) of only of streams and

genera with above average values. The dashed line represents the average value of LCBD (0.021) and SCBD (0.0204)

Fig. 5 Relationship between Local Contribution to b-diversity
(LCBD) and EPT a-diversity. Color gray represent the

confidence interval of 0.95 for the polynomial model

Fig. 6 Relationship between Species Contribution to b-diversity (SCBD) and total abundance (A) and (B) occupancy of EPT. Color

gray represent the confidence interval of 0.95 for the linear and polynomial model, respectively
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well as food resources and shelters, can provoke a

reduction in the abundance of the less tolerant genera,

contributing to a decrease in the a-diversity of the

streams. On the other hand, the a-diversity of the EPT
in the present study area was structured by broad-scale

spatial factor, which is probably because the margin

canopy cover has been structured by these factors,

resulting in greater variation in this variable with

increasing distance between streams. Li et al. (2019)

obtained similar results, showing that the diversity of

aquatic insects in streams is related to broad-scale

spatial factors.

Contradicting the prior expectations of the present

study, the LCBD of the EPT was not related to the

anthropic gradient. The absence of any clear relation-

ship between these variables may reflect the fact that

all the streams were located within a single basin

(Capim River), which may have resulted in the

sampling of a single spectrum of anthropic impact,

not strong enough to influence the uniqueness of the

EPT group. Although environmental variables and

land use have been identified as important factors for

the LCBD of aquatic insects (Tonkin et al., 2016;

Bourassa et al., 2017; Heino et al., 2017; Sor et al.,

2018; Li et al., 2020a). The latter is still difficult to

predict (Tonkin et al., 2016), especially in impacted

streams (Leão et al., 2020). The difficulty of identi-

fying the predictors that are most important for the

LCBD may also result from the differential responses

of biological groups to different predictors (Landeiro

et al., 2018).

Different than expected, the LCBD was negatively

related to the a-diversity of the EPT. This pattern has

been reported frequently in studies of aquatic systems,

which have focused on insects (Heino et al., 2017;

Heino & Grönroos, 2017; Siegloch et al., 2018), fish

(Legendre & De Cáceres, 2013; Kong et al., 2017;

Borges et al., 2020; Leão et al., 2020), and diatoms

(Pajunen et al., 2017; Teittinen et al., 2017; Vilmi

et al., 2017). The data indicate that the streams with

more unique species tend to have fewer species overall

(Legendre & De Cáceres, 2013). In the present study,

most of the streams with higher LCBD values were

impacted and had a low a-diversity of EPT (1–7

genera), with at least one genus that had either an

ample (e.g.,Ulmeritoides,Campylocia,Miroculis, and

Macrostemum) or a more restricted distribution (e.g.,

Caenis, Callibaetis, Americabaetis and Ulmeritus)

among the streams. Overall, these findings indicate

that sites with higher LCBD values may have either

lower or higher a-diversity, a pattern also reported by

Kong et al. (2017) and Sor et al. (2018). This may be

related to the proportion of common and rare species

present in the communities, which will influence

whether the relationship between the LCBD and a-
diversity is positive, negative or neutral (Da Silva

et al., 2018). One other factor that may account for the

higher LCBD values recorded at sites with lower a-
diversity is the fact that impacted streams may be

occupied by species that are more tolerant of relatively

harsh conditions (Pajunen et al., 2017). This is

partially true in the present study, given that genera

such as Ulmeritoides, Campylocia, Miroculis (Ephe-

meroptera), and Macrostemum (Trichoptera), which

are considered to be tolerant of anthropic impacts (see

Nogueira et al., 2011; De Faria et al., 2017; Cardoso

et al., 2018), occurred frequently in streams with

higher LCBD values, but also occurred at other sites.

Regardless of whether the relationship between the a-
diversity and the LCBD is negative or positive, sites

with higher LCBD values should be prioritized in

conservation programs, as this characteristic may

indicate an urgent need for environmental manage-

ment or the ecological restoration of the site (Legendre

& De Cáceres, 2013; Da Silva et al., 2018).

The Species Contribution to b-Diversity (SCBD)

was positively related to the total abundance and

occupancy of EPT in the streams, in coincidence with

previous studies (Heino & Grönroos, 2017; Vilmi

et al., 2017; Szabó et al., 2019). This indicates that the

genera that contributed most to b-diversity in the

present study are more abundant overall and occupy

streams with varying levels of environmental integ-

rity. Given this, common species may have a consid-

erable influence on b-diversity when their abundance

varies widely between sites (Vilmi et al., 2017). The

genera that contributed most to the b-diversity
(SCBD) of the EPT in the present study were

Ulmeritoides, Miroculis, Campylocia (Ephe-

meroptera), and Macrostemum (Trichoptera) which

were all relatively abundant (620–1,856 individuals)

and occurred in over half (56–77%) of the streams,

including both impacted and undisturbed sites. The

ample distribution or greater abundance of these

genera in streams has been recorded in a number of

previous studies (Nogueira et al., 2011; De Faria et al.,

2017; Cardoso et al., 2018), and may be related with

the great trophic plasticity, variability in substrates
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(Fidelis et al., 2008; De Oliveira & Nessimian, 2010;

Ceneviva-Bastos et al., 2017; Mboye et al., 2018), and

possibly also to the varying levels of tolerance found

in the species of each genus (see Poff and Ward, 1990;

Poff, 1997).

Conclusion

The multiple anthropic activities that influence stream

environmental structure in the basin of the Capim

River have resulted in a complex scenario with some

responsible for the establishment of a gradient of

anthropic impact. In fact, the results of the study

indicate that more intense anthropic activity reduced

the a-diversity of the EPT and was indirectly related

with the b-diversity (LCBD). When the structure of

the EPT communities found in the study area is

analyzed in terms of the Total Beta Diversity (BDTo-

tal), the LCBD was negatively related to the number of

genera in the streams, while the SCBD was positively

related to the total abundance and genus occupancy.

On the other hand, although the less abundant (rare)

genera with more restricted distributions contributed

less to b-diversity, they were important components of

this metric, and should not be disregarded. It is also

important to note that the present study was limited to

the evaluation of the influence of spatial factors on a-
diversity, and did not consider, for example, the

dispersal capacity of the aquatic insects themselves.

The findings of the present study support the combined

use of a and b-diversity (that is, both the LCBD and

the SCBD) for a more robust assessment of the impact

of anthropic activities on the EPT community, given

that each of these metrics assesses a distinct facet of

community structure. Another important point is that

streams with a more unique composition of genera do

not always have higher a-diversity, which is important

to consider when applying conservation or restoration

efforts to streams with higher LCBD values.
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aquáticas após o corte seletivo de madeira na Amazônia
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córregos do Planalto Central do Brasil. Acta Limnologica

Brasiliensia 13: 1-9.

Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward

selection of explanatory variables. Ecology 89:

2623-2632.

Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of

ecological data by means of principal coordinates of

neighbour matrices. Ecological Modelling 153: 51-68.

Borges, P. P., M. S. Dias, F. R. Carvalho, L. Casatti, P.

S. Pompeu, M. Cetra, F. L. Tejerina-Garro, Y. R. Súarez, J.
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Aquáticos na Amazônia Brasileira: taxonomia, biologia e

ecologia. Editora do INPA, Manaus: 193-216.

Shimano, Y., M. Cardoso & L. Juen, 2018. Ecological studies of

mayflies (Insecta, Ephemeroptera): can sampling effort be

reduced without losing essential taxonomic and ecological

information?. Acta Amazonica 48: 137-145.

Siegloch, A. E., A. L. L. da Silva, P. G. da Silva & M. I. M.

Hernández, 2018. Local and regional effects structuring

aquatic insect assemblages at multiple spatial scales in a

Mainland-Island region of the Atlantic Forest. Hydrobi-

ologia 805: 61-73.

Silva, L. F. R., F. S. Machado, D. L. M. C. Resende & U.

G. Neiss, 2018. Immature Odonata community in streams:

diversity, season variation and habitat preference in dif-

ferent levels of degradation. North-Western Journal of

Zoology 14: 232-236.

Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L.
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